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Abstract: Significant progress has been achieved in the field of oriented object detection (OOD) in
recent years. Compared to natural images, objects in remote sensing images exhibit characteristics of
dense arrangement and arbitrary orientation while also containing a large amount of background
information. Feature extraction in OOD becomes more challenging due to the diversity of object
orientations. In this paper, we propose a semantic-driven rotational feature enhancement method,
termed SREDet, to fully leverage the joint semantic and spatial information of oriented objects in the
remote sensing images. We first construct a multi-rotation feature pyramid network (MRFPN), which
leverages a fusion of multi-angle and multiscale feature maps to enhance the capability to extract
features from different orientations. Then, considering feature confusion and contamination caused
by the dense arrangement of objects and background interference, we present a semantic-driven
feature enhancement module (SFEM), which decouples features in the spatial domain to separately
enhance the features of objects and weaken those of backgrounds. Furthermore, we introduce an
error source evaluation metric for rotated object detection to further analyze detection errors and
indicate the effectiveness of our method. Extensive experiments demonstrate that our SREDet method
achieves superior performance on two commonly used remote sensing object detection datasets
(i.e., DOTA and HRSC2016).

Keywords: oriented object detection; remote sensing images; feature enhancement; error diagnosis

1. Introduction

Oriented object detection in remote sensing images aims to utilize rotated bounding
boxes to accurately determine the position and category of the object of interest [1,2]. It
has gradually evolved into a significant domain within computer vision [3] and serves
as a foundation task for various applications, such as smart cities, maritime rescue, and
battlefield surveillance [4–9]. Due to the characteristics of overhead perspective and remote
photography [10], remote sensing images typically have several characteristics: (1) objects
are distributed with arbitrary orientations and variant appearances; (2) dense small-scale
objects, such as vehicles and ships, often tend to cluster together closely; and (3) remote
sensing images contain a significant amount of background information.

Analyzing the first characteristic of remote sensing imagery, regular convolutional net-
works cannot guarantee the precision of features when the object is rotated [11], as shown
in Figure 1A. We input an image and its 90-degree-rotated version into the network, and the
resulting feature map visualizations are depicted in Figure 1(A2). We observe that the fea-
ture maps exhibit accurate and well-represented responses under normal input conditions.
However, when the object is rotated, the extracted features show missing components and
weakened responses. The last two characteristics of remote sensing images introduce noise
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in object detection, including both interferences between objects and background noise, as
shown in Figure 1B. Dense arrangements of objects may encounter interclass feature cou-
pling and intraclass feature boundary blurring, leading to less prominent feature responses
for some objects, as seen in the yellow circle of Figure 1(B2). Using the effective objects
in DOTAv-1.0 [12] as reference, we leverage the corresponding segmentation information
from iSAID [13] to perform pixel-wise analysis, where the background pixels account for
96. 95% of the total. The abundance of background information may cause the similarity
of background areas to the erroneously activated objects, as observed in the red circle
of Figure 1(B2).

（2）（1） （3）（2）（1） （3）

A

B

Figure 1. Challenges in Feature Extraction: Poor Rotation Handling, Feature Overlapping, En-
hancement Errors, and Weak Responses. Columns indicate the images (left) and their feature maps
produced by RetinaNet (middle) and our model (right). Specifically, (A1,B1) represent the images
selected from the DOTA dataset, (A2,B2) represent the feature maps generated by ResNet50+FPN
and (A3,B3) represent the feature maps extracted by the ResNet50 + MRFPN and ResNet50 + FPN +
SFEM variants of our method.

Currently, rotation-invariant feature extraction methods focus on two main approaches.
One involves improving the network extraction structure, such as designing rotation-
invariant network architectures using group convolution networks [14]. However, these
methods require complex network design and are challenging to train. The other approach
involves integrating feature maps from different angles [15], but the feature maps lack
semantic information communication between different scales, leading to low information



Remote Sens. 2024, 16, 2317 3 of 21

utilization. For rotation object detection, in addition to extracting rotation-invariant fea-
tures, optimizing the feature maps is also crucial. Representative feature enhancement and
attention mechanism methods can be categorized into three aspects. Firstly, effective atten-
tion mechanisms, such as channel attention and spatial attention, are introduced to focus
on the salient features of the object, addressing noise and boundary blur problems [16,17].
However, utilizing information from feature pooling operations to generate weights and
reconstruct feature maps does not guarantee the reliability of the weighting. This approach
may still result in the activation of incorrect channels or spatial locations. Additionally,
supplementary supervision, such as object box boundaries, center points, or masks, can be
helpful to strengthen features [18–20]. However, these supervision signals may not be com-
prehensive enough, leading to feature overlap issues. Finally, considering the distinctions
between the regression and classification tasks within the detection heads, it can be effective
to design different feature activation methods to decouple features and address feature
incompatibility problems [21]. However, this approach may fail to suppress interference
from background noise, resulting in many false positives during the detection process.

In this paper, to further address the aforementioned issues, we design a multi-rotation
feature pyramid network (MRFPN) architecture for oriented object detection in remote
sensing imagery. This architecture enhances the rotation-invariant characteristics of objects
while strengthening the contextual information and semantic consistency between feature
maps by acquiring a more comprehensive set of rotation-invariant feature fusion across
various rotation angles and scales. The feature response from our proposed architecture
is depicted in Figure 1(A3). Furthermore, we introduce a novel component, named the
Semantic-driven Feature Enhancement Module (SFEM), to obtain more precise and reliable
semantic information to enhance feature maps. It approximates the decoupling of features
from different object categories and enforces constraints, achieving feature denoising in
the spatial domain. This component reduces inter-class feature coupling and intra-class
interference and alleviates background interference to achieve robust rotation detection, as
illustrated in Figure 1(B3). Finally, we propose a new evaluation metric for oriented object
detection to assess the model response to different types of errors, further demonstrating the
effectiveness of the proposed modules. The main contributions of this work are summarized
as follows:

• We propose a semantic-driven rotational feature enhancement method for oriented
object detection, effectively addressing the significant rotational feature variations and
complex backgrounds in remote sensing object detection.

• We introduce a multi-rotation feature pyramid network to extract rotation-invariant
features and maintain the consistency of multiscale semantic information. This module
utilizes multi-angle and multiscale feature maps combined with deformable convolu-
tions to represent remote sensing objects.

• We innovatively integrate the semantics information into oriented object detection by
designing the semantic-driven feature enhancement module in an implicit supervision
paradigm. It enhances features along the channel and spatial dimensions, effectively
addressing inter-class coupling and background interference in feature maps.

• We introduce a novel evaluation metric for oriented object detection that refines
different error types, which can reflect the sensitivity of the model to various types of
errors. Extensive experiments demonstrate the superiority of the proposed method.

2. Related Work
2.1. Arbitrary Oriented Object Detection

In recent years, object detection in remote sensing images has become increasingly
popular. Unlike general object detection, objects in remote sensing images can be oriented
in arbitrary directions. With the continuous advancement of deep learning technology,
many excellent methods have emerged to detect rotated objects [22]. Oriented R-CNN [23]
employs a novel box encoding system called midpoint offset to constrain directed candidate
areas effectively, while R3Det [24] addresses feature misalignment during refinement with
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a feature refinement module. Yolov8 [25] designed an entirely new backbone extraction
network, significantly enhancing the ability to extract target features and improving perfor-
mance in remote sensing rotation object detection tasks. Zhang et al. [26] and Yang et al. [27]
integrate image super-resolution methods for detecting small objects within vast back-
grounds, even on low-resolution inputs. Additionally, an adaptive detection system based
on early exit neural networks [28] reduces training costs by allowing high-confidence
samples to exit the model early, thus improving the efficiency of detecting complex remote
sensing images. Besides convolutional networks, transformer architectures have also made
significant contributions. Ma et al. [29] are the first to attempt and implement an end-to-end
transformer-based framework for oriented object detection. Building on the DERT network,
Carion et al. [30] and Dai et al. [31] propose an adaptive oriented proposal refinement
module, which effectively enhanced the capability of rotation detection in remote sensing
targets. Additionally, Yu et al. [32] introduce a method called spatial transformation de-
coupling, providing a simple yet effective solution for oriented object detection using the
ViT framework.

2.2. Rotation Invariant Feature Extraction

The varied orientations of objects in remote sensing imagery highlight the crucial
need for extracting rotation-invariant features. To tackle this challenge, researchers have
proposed two main approaches. The first involves modifying the convolution operation
itself to enable the extraction of rotation-sensitive features. Cohen et al. [33] first propose
the concept of group convolution, integrating four-fold rotational equivariance into CNNs.
Hoogeboom et al. [34] expand group convolution to hexagonal lattices, incorporating
sixfold rotational equivariance. This adaptation enables more efficient handling of rota-
tions, improving feature recognition across various orientations. Following this, ReDet [14]
constructed a backbone to extract rotation-invariant features. Pu et al. [35] design adap-
tive rotated convolution, which can adaptively rotate to effectively extract target features.
Mei et al. [36] propose using polar coordinate transformation to convert rotational changes
into translational changes, thereby mitigating the rotation sensitivity issue in CNN net-
works. The second approach extracts rotation-invariant features through feature mappings
with rotational channels. Han et al. [37] and Deng et al. [11] utilize convolutional kernels
at different angles to generate feature maps in various directions, thereby enriching the
orientation information represented in the feature maps. Zheng et al. [38] propose an
object-oriented rotation-invariant semantic representation framework to guide the network
in learning rotation-invariant features. Finally, Cao et al. [15] construct a rotation-invariant
spatial pooling pyramid by rotating feature maps to extract rotation-invariant features.

2.3. Semantic Information Feature Enhancement

Remote sensing images often include complex background details that can introduce
noise into feature maps, potentially impacting object detection performance. Traditional
channel or spatial attention mechanisms may not always accurately enhance regions cor-
responding to actual objects. To overcome this challenge, several approaches have been
developed that leverage semantic information to enhance feature maps. Yang et al. [19]
and Li et al. [39] utilize binary masks as supervisory information to spatially weight feature
maps according to predicted probability maps, aiming to focus the model’s attention on
relevant areas. Yu et al. [7] use a deep segmentation network to enhance the relationship
between roads and vehicles, incorporating this into a visual attention mechanism with spa-
tiotemporal constraints to detect small vehicles. Correspondingly, Yang et al. [40] introduce
multi-mask supervision to implicitly generate weight information, decoupling the features
of different objects. Song et al. [20] use regions enclosed by the midpoints of the edges of
the object’s bounding box as masks, acquiring weight information for object and non-object
areas through supervised learning of spatial feature encoding. Cao et al. [15] develope
semantic edge supervision features using object box boundary information, effectively ad-
dressing the challenges of complex backgrounds and the lack of contextual cues in remote
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sensing object detection. Liu et al. [18] transform object boxes into two-dimensional Gaus-
sian expressions to obtain center and boundary masks, enhancing the network to improve
object localization accuracy while suppressing interference from complex backgrounds.
Finally, Zhang et al. [41] introduce a multistage enhancement network that enhances tiny
objects at both the instance level and the feature level across different stages of the detector.

3. Method

The proposed SREDet is based on a fundamental single-stage detector. The complete
framework, as depicted in Figure 2, consists of four main components: a feature extraction
backbone, the MRFPN for extracting rotation-invariant features across multiple angles and
scales, the SFEM for feature enhancement driven by semantic segmentation information,
and the oriented detection head for classification and regression tasks.
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Figure 2. Overall architecture of the proposed SREDet model. SREDet primarily consists of four parts:
First, the backbone feature extraction network is utilized for initial feature extraction. Subsequently,
multi-angle (different colors represent different angle feature maps) and multiscale feature maps
are fused through the MRFPN to extract rotation-invariant features. Features are then fed into the
SFEM module to suppress background noise and enhance foreground objects. Finally, the processed
features are passed to both classification and regression heads to obtain oriented bounding box
prediction results.

3.1. Multi-Rotation Feature Pyramid Network

We consider the distinct characteristics of remote sensing imagery, specifically the
fact that objects exhibit arbitrary directional features in the overhead view. Therefore,
we believe the extraction of rotation-invariant features of objects essential for oriented
object detection in remote sensing applications. Traditional convolutional neural networks
cannot directly extract features that remain consistent across object rotations, leading to
discrepancies in the features extracted from the same object with different angles. To
overcome this limitation, two primary strategies have been developed: Deng et al. [11] and
Weiler et al. [42] modify the convolution operation architecture to support the extraction
of rotation-invariant features, and Han et al. [37] integrate multi-angle features to augment
directional information and extract rotation-invariant characteristics.

In response to the previously mentioned issue, we propose a feature pyramid network
that integrates multiscale and multi-angle features, as shown in Figure 2. This network
aims to reduce discrepancies in feature extraction for the same object from different angles
and to approximate rotation-invariant features as closely as possible. Let I be the input
image. The output after passing through the backbone extraction network is as follows:

Fθi = B(Tθi (I)), (1)

where represents the backbone network, θi represents different rotation angles, and T
represents the rotation operation.

After obtaining multi-angle feature maps through the backbone network, to ensure
feature map consistency, we designed a rotation feature alignment module (RFAM) as
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seen in Figure 3. This module maps rotated features back to their original states and
concatenates n branches together in the channel dimension. Finally, the features are fused
using convolution with a kernel size of 1:

Ci = Conv(Concat[T−θ1(Fθ1)i, T−θ2(Fθ2)i, · · · , T−θn(Fθn)i])(i = 3, 4, 5). (2)

1
F

2
F

n
F

CC

1( )rotate −

2( )rotate −

( )nrotate −

1×1

DCN

RFAM

Figure 3. Structure of Rotation Feature Alignment Module. This module maps the features from
different orientations back to the original direction, and extracts features more closely aligned with
the object through deformable convolution.

To merge semantic information from different levels and extract features of objects with
varying aspect ratios and shapes, we enhanced the feature pyramid network (FPN) [43]
architecture by substituting the conventional convolutional layers with deformable convo-
lutions. The outputs of different levels can be represented by the following formulas:

Pi = DCN(Ci + Interpolation(Ci+1))(i = 3, 4),
P5 = DCN(C5),

Pi = DCN(Pi−1)(i = 6, 7),
(3)

where DCN represents deformable convolution and pi represents the outputs of MRFPN.

3.2. Semantic-Driven Feature Enhancement Module

In remote sensing scenarios, background information is abundant, which can lead
to inadvertent amplification of features similar to certain categories of objects. This phe-
nomenon, in turn, generates a significant number of false positive samples during detection.
Furthermore, the characteristic presentation of objects as densely packed small objects in re-
mote sensing imagery leads to mutual interference among object features. This interference
culminates in the blurring of feature maps and a diminished activation level.

To enhance feature maps, attention mechanisms such as channel attention, spatial
attention, and hybrid attention are commonly employed to reweight the feature maps, thus
highlighting significant areas while suppressing irrelevant ones. However, this approach
is predicated on computing responses based on the spatial and channel characteristics of
the feature maps and does not guarantee the effectiveness and reliability of the areas being
enhanced or suppressed. To further enhance the reliability of the regions being augmented,
Li et al. [39] and Cao et al. [44] utilize mask information obtained from bounding boxes
to assist in the enhancement of feature maps. Yang et al. [19] employe an explicit feature
map enhancement approach, whereby the probability predicted by the mask is directly
multiplied on the original feature maps. In contrast, yang et al. [40] adopt an implicit
feature map enhancement method, using convolution to generate weights from the feature
maps of the layer preceding the mask prediction, which are the same dimensions as the
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original feature maps, and then apply these weights to the original feature maps, as seen in
Figure 4. In this paper, we define the method of directly multiplying the predicted semantic
information probabilities with the feature maps in the spatial domain as explicit feature
enhancement. Conversely, the approach of generating a set of weights from the semantic
information feature maps and then weighting the feature maps accordingly is defined as
implicit enhancement.

Feature 

Extraction

ground-truth

mask segmentation

(a)

outF

W

W×H×C

softmax

1×1

W×H×C

W×H×C W×H×1

inF

(b)

1×1

W×H×(C+1)

Figure 4. Different Semantic Formats and Enhancement Strategies. This figure shows two types of
semantic annotation and two distinct enhancement methods, where (a,b) demonstrate the implicit
and explicit enhancement, respectively. Fin and Fout represent the feature map before and after
enhancement, and W indicates the weights generated by different strategies.

However, we believe that the use of bounding boxes to generate mask information
still presents certain inadequacies:

• The overlap of bounding boxes for objects can still lead to mixing features within and
between classes.

• The shape of some objects cannot be closely aligned with the bounding boxes, re-
sulting in masks that incorporate excessive background information. This not only
complicates the task of mask prediction but may also inadvertently enhance certain
background regions.

We use semantic segmentation information to resolve the aforementioned issues and
employ an implicit feature map enhancement approach. The features of objects belonging
to different categories are decoupled into their respective channels and the features of both
objects and backgrounds are separately enhanced and weakened within the spatial domain.
The architecture of SFEM is illustrated in the provided Figure 2. To enhance the network’s
accuracy in predicting semantic segmentation without incurring additional computational
costs, we employ dilated convolutions to expand the receptive field of the feature maps,
thereby furnishing more abundant semantic information. The process of feature extraction
can be represented as follows:

F′ = convdn(· · · convd1(F, W1, b1) · · · , Wn, bn), (4)

we use convolution with a kernel size of 1 to adjust the number of channels and employ a
sigmoid function as the activation function to generate feature weights:
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Fout = sigmoid(conv1×1(F′))︸ ︷︷ ︸
WSFEM

⊙F. (5)

From another perspective, it can be considered that the network decouples the features
of different categories into their respective channels. Without loss of generality, assuming
that the dataset includes a total of L categories and that the test image contains the first L0
categories, the output can be represented as follows:

Fout =
L0⋃

i=1

Ci⋃
n=1

wi
n ⊙ xi

n∪
L⋃

j=L0+1

Cj⋃
m=1

wj
m ⊙ xj

m∪
Cbg⋃
t=1

wbg
t ⊙ xbg

t , (6)

where Fout ∈ RC×H×W is the element-wise product. Ci represents the number of channels
belonging to the i-th category, and wi

n and xi
n denote the weight and feature of the i-th

category along the n-th channel. The meanings of the remaining symbols can be deduced
following the same logic.

3.3. Identifying Oriented Object Detection Errors

The primary evaluation metric for oriented object detection in remote sensing images
is the mean average precision (mAP). Although mAP succinctly summarizes model per-
formance, it is challenging to discern what errors constrain the model’s performance. For
example, a false positive may result from misclassification, incorrect orientation, inaccurate
localization, or background confusion. Inspired by Bolya D [45], we introduce oriented
object detection errors in rotation detection.

3.3.1. Defining Main Error Types

To comprehensively assess the error distribution within the component mAP, false
positive and false negative samples are classified into five distinct types, as shown in
Figure 5. We use the rotational intersection-over-unit (RIoU) metric to quantify the overlap
between two rotated bounding boxes, where RIoUmax denotes the maximum RIoU between
a false positive sample and its corresponding ground truth(GT). Additionally, tb represents
the threshold for background objects, conventionally set to 0.1, while t f signifies the
threshold for foreground objects. Since we primarily focus on the mAP50 metric of the
model, t f is generally set to 0.5 unless otherwise noted.

Warcraft:0.9Warcraft:0.9
Warcraft:0.9Warcraft:0.9

aircraft-carrier:0.8aircraft-carrier:0.8
aircraft-carrier:0.8aircraft-carrier:0.8

Cls Loc Cls+Loc Bkgd Missed

N/A0 1bt ft 0 1bt ft 0 1bt ft 0 1bt ft

Figure 5. Definition of error types. Red boxes denote the GT of the object, green boxes represent
false positive samples, and the actual situation of RIoU for each error type is indicated by yellow
highlighted line segments.

• Classification Error: RIoUmax ≥ t f , but the predicted category is incorrect.
• Localization Error: The predicted category is correct, but tb ≤ RIoUmax ≤ t f .
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• Cls and Loc Error: tb ≤ RIoUmax ≤ t f , and the predicted category is incorrect.
• Background Error: The background was falsely detected as the object, RIoUmax ≤ tb.
• Missed Error: All undetected GT instances.

3.3.2. Setting Evaluation Metrics

Simply counting the numbers of each type of error does not scientifically demonstrate
its impact on the performance of the model. To evaluate the impact of each type of error on
the model, we will modify the errors by type and recalculate the mean average precision
to obtain ∆mAP. The error between mAP mod and the original mAP will serve as the
evaluation metric:

∆mAP = mAP mod − mAP. (7)

We will modify each error type according to the following procedure:

• Modify Classification Error: Modify the predicted incorrect categories to the correct
categories. If duplicate detections occur, remove object boxes with low confidence.

• Modify Localization Error: Replace the predicted object boxes with the corresponding
GT object boxes. If duplicate detections occur, remove object boxes with low confidence.

• Modify Cls and Loc Error: Due to the inability to determine which GT object box
matches the predicted object box, remove it from false positives.

• Modify Background Error: Remove all prediction boxes that misclassify background
as objects.

• Modify Missed Error: When calculating mAP, subtract the number of ground truths
missed from the total GT. From another perspective, it can be said that the model has
performed precise detection on all missed objects.

3.4. Loss Function

Our loss function mainly consists of three components; besides the classification
and regression losses from the original single-stage detector, we incorporate a semantic
segmentation task loss to supervise the SFEM module. Therefore, the total loss definition
for SREDet is as follows:

L = Lcls(li, l∗i ) + Lreg(ti, t∗i ) + Lseg(pi, p∗i ), (8)

where Lcls denotes the classification loss, li signifies the probability as predicted by the
network that an anchor is an object, and l∗i represents the corresponding ground truth
label. Our network employs focal loss [46] as the classification loss. The L1 loss is used as
the regression loss Lreg, and ti and t∗i denote the predicted bounding box and the ground
truth bounding box, respectively. Each box is represented in vector form, and the boxes are
encoded following the format specified in (9) and (10):

tx = (x − xa)/wa, ty = (y − ya)/ha
tw = log(w/wa), th = log(h/ha), tθ = θ − θa,

(9)

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha

t∗w = log(w∗/wa), t∗h = log(h∗/ha), t∗θ = θ∗ − θa.
(10)

In the SFEM for the task of semantic segmentation detection, we utilize Dice loss [47].
Given its application across various pyramid layers, the overall semantic segmentation loss
is formulated as follows:

Lseg =
S

∑
i=1

εi(1 −
2 ×

∣∣p∗i ∩ pi
∣∣∣∣p∗i ∣∣+ |pi|
), (11)

where S represents the number of feature maps used for supervision, εi represents the
weight coefficients associated with each feature map. p∗i represents the set of pixels in
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the semantic segmentation mask of ground truth, and pi represents the set of pixels in
the predicted semantic segmentation mask. The intersection

∣∣p∗i ∩ pi
∣∣ counts the pixels

common to both the prediction and the ground truth, while
∣∣p∗i ∣∣ and |pi| count the pixels

in the ground truth and the predicted semantic segmentation masks, respectively.

4. Results

In this section, we provide a comprehensive description of the two datasets employed
in our experiments along with a detailed discussion of the principal results obtained.
Furthermore, we meticulously outline and analyze the design of our ablation studies,
shedding light on their significance and impact.

4.1. Datasets
4.1.1. DOTA and iSAID

DOTA [12] is one of the commonly used datasets for remote sensing image detection,
currently available in three versions. Since only the DOTA-v1.0 dataset has been annotated
with segmentation information by some scholars to form the iSAID dataset [13], we select
DOTA-v1.0 as the experimental data. The dataset comprises 2806 high-resolution aerial
images, covering various complex scenes and shooting angles. It contains a rich variety of
targets, including planes (PL), baseball diamonds (BD), bridges (BR), ground track fields
(GTF), small vehicles (SV), large vehicles (LV), ships (SH), tennis courts (TC), basketball
courts (BC), storage tanks (ST), soccer-ball fields (SBF), roundabouts (RA), harbors (HA),
swimming pools (SP) and helicopters (HC), totaling 188,282 annotated objects. We used
DOTA’s standard rotated bounding boxes as a reference and filtered the corresponding
segmentation labels from the iSAID dataset. We divided the dataset according to the
original DOTA data partitioning method, with the dataset split into 1/2 training set, 1/6
validation set, and 1/3 test set. The results in Table 1 were obtained by training on the
training and validation sets and then predicting the test set, with the test results acquired
through the official evaluation server. Results in the remaining tables are, by default, based
on training on the training set and testing on the validation set.

4.1.2. HRSC2016

HRSC2016 is a publicly available remote sensing dataset specifically designed for ship
detection. It includes images from six prominent harbors, featuring two primary scenarios:
ships at sea and ships near the shore. The dataset comprises a total of 1061 images and
2976 object instances. The training set contains 436 images, the validation set includes
181 images, and the test set comprises 444 images. Image sizes range from 300 × 300 pixels
to 1500 × 900 pixels, with the majority exceeding 1000 × 600 pixels. The original dataset
provides ship targets labeled with oriented bounding boxes and we annotated all targets
with semantic segmentation to facilitate model training.

4.2. Implementation Details

We conducted experiments on multiple baselines. For one approach, we selected
networks such as RetinaNet [46] and Faster R-CNN [48] as baseline networks, using
ResNet101 as the default backbone. To maintain consistency, the experiments were trained
and tested on the MMrotate platform [49]. We used the SGD optimizer, setting momentum
and weight decay to 0.9 and 0.0001, respectively. A MultiStepLR strategy was adopted,
starting with a learning rate of 0.0025. The training spanned 24 epochs, with the learning
rate automatically reduced to 1/10 of its original value at epochs 16 and 22. Rotated non-
maximum suppression was applied to the predicted rotated bounding boxes to minimize
redundancy, with a confidence score threshold of 0.1 and an IoU threshold of 0.1. For
another approach, we conducted experiments using YOLOv8 as the baseline, employing
the default YOLOv8 framework configuration [25]. The initial learning rate was set to 0.01,
and the final learning rate was 0.001. The momentum was configured at 0.937, and the
weight decay was set to 0.0005. We implemented a warmup period of 3.0 epochs, during
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which the initial momentum was set to 0.8 and the initial bias learning rate was 0.1. All
training and testing experiments were conducted on an RTX A6000 with a batch size of 2.

DOTA dataset comprises large-scale images, so during the training and testing phases,
the images were divided into 1024 × 1024 patches with a 200-pixel overlap. Various data
augmentation techniques were employed, specifically including random flipping (with
a probability of 0.25), random rotation (with a probability of 0.25), and random color
transformation (with a probability of 0.25). When YOLOv8 was being trained, mosaic
augmentation was also introduced. Additionally, to further enhance network performance,
multiscale training and testing were applied. When training on the HRSC2016 dataset, the
number of training epochs was set to 72. The initial learning rate was set to 0.0025, and it
was reduced to 0.1 of its original value at epochs 48 and 66. The data processing method
used was the same as that applied to the DOTA dataset.

4.3. Main Results
4.3.1. Results on DOTA

We evaluate the proposed method against other state-of-the-art approaches on the
DOTA dataset. The results are presented in Table 1. Our method achieved a mAP50 of
76.34%, and under the approach of multiscale training and testing, our method achieved a
mAP50 of 79.31%. When comparing metrics in different categories, our detectors performed
the best for the categories of small vehicles, ships, and tennis courts, and achieved the second-
best results for the ground field tracks, basketball courts, roundabouts, and helicopters.

Table 1. Comparison to state-of-the-art methods on the DOTA-v1.0 dataset. R-101 denotes ResNet-101
(likewise for R-50 and R-152), RX-101 denotes ResNeXt-101 and H-104 denotes Hourglass-104. The
best result is highlighted in bold, and the second-best result is underlined. * denotes multiscale
training and multiscale testing.

Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP50

FR-O [12] R-101 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.40 52.52 46.69 44.80 46.30 52.93
RRPN [50] R-101 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01

RetinaNet-R [46] R-101 88.92 67.67 33.55 56.83 66.11 73.28 75.24 90.87 73.95 75.07 43.77 56.72 51.05 55.86 21.46 62.02
CADNet [51] R-101 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
O2-DNet [52] H-104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04

CenterMap-Net [53] R-50 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74
BBAVector [54] R-101 88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70 72.32

SCRDet [19] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
DRN [55] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

Gliding Vertex [56] R-101 89.89 85.99 46.09 78.48 70.32 69.44 76.93 90.71 79.36 83.80 57.79 68.35 72.90 71.03 59.78 73.39
SRDF [20] R-101 87.55 84.12 52.33 63.46 78.21 77.02 88.13 90.88 86.68 85.58 47.55 64.88 65.17 71.42 59.51 73.50
R3Det [24] R-152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

FCOSR-S [57] R-50 89.09 80.58 44.04 73.33 79.07 76.54 87.28 90.88 84.89 85.37 55.95 64.56 66.92 76.96 55.32 74.05
S2A-Net [37] R-50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12

SCRDet++ [40] R-101 89.20 83.36 50.92 68.17 71.61 80.23 78.53 90.83 86.09 84.04 65.93 60.80 68.83 71.31 66.24 74.41
Oriented R-CNN [23] R-50 88.79 82.18 52.64 72.14 78.75 82.35 87.68 90.76 85.35 84.68 61.44 64.99 67.40 69.19 57.01 75.00

MaskOBB [58] RX-101 89.56 89.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33
CBDA-Net [18] R-101 89.17 85.92 50.28 65.02 77.72 82.32 87.89 90.48 86.47 85.90 66.85 66.48 67.41 71.33 62.89 75.74

DODet [59] R-101 89.61 83.10 51.43 72.02 79.16 81.99 87.71 90.89 86.53 84.56 62.21 65.38 71.98 70.79 61.93 75.89

SREDet(ours) R-101 89.36 85.51 50.87 74.52 80.50 74.78 86.43 90.91 87.40 83.97 64.36 69.10 67.72 73.65 65.93 76.34
SREDet(ours) * R-101 90.23 86.75 54.34 80.81 80.41 79.37 87.02 90.90 88.28 86.84 70.16 70.68 74.43 76.11 73.42 79.32

This performance can be attributed to the rotation-invariant features’ sensitivity to
capturing the orientation of objects and the feature enhancement effects realized through
semantic information. Represented by its detection capabilities for swimming pools, heli-
copters, and planes, our method effectively identifies and regresses objects with irregular
shapes. This is primarily due to incorporating semantic segmentation information as su-
pervision, allowing the network to focus precisely on the object and contextual features
against complex backgrounds, providing more regression clues. Additionally, our method
performs well with densely arranged objects, such as cars, benefiting from SFEM which
reduces the coupling of intra-class features, thereby highlighting crucial features. We
also observed that for ground field tracks, roundabouts, and baseball diamonds, utilizing
semantic segmentation information is more efficient than object bounding box masks. The
primary reason for this is that masks might include background information or other objects,
causing feature confusion or erroneous enhancement. Our method also adeptly handles
the challenges posed by arbitrary orientations, irregular shapes, dense arrangements, and
varying scales of remote sensing objects, achieving precise rotation object detection.
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From the visualized detection images, as seen in Figure 6, it can be observed that our
network achieves excellent detection results for various types of objects. As seen in the first
row of images, the network can accurately detect harbors of different shapes and sizes. This
is primarily due to the MRFEN module’s ability to extract features of varying scales and
shapes. From the fourth column of images, it is evident that the network exhibits effective
detection performance on dense objects, largely attributed to the SFEM, which alleviates
the feature overlap among similar objects and enhances the feature maps of small objects.

PL BD BR GTF SV LV SH TC

BC ST SBF RA HA SP HC

Figure 6. Visualization of Detection Results. Visualization of predictions on the DOTA dataset using
our method, SREDet.

4.3.2. Ablation Study

We conducted ablation studies on the proposed modules to determine their respective
contributions and effectiveness. All experiments employed simple random flipping as an
augmentation technique to avoid overfitting. The results of these experiments are depicted
in Table 2, while the error-type metrics proposed in this paper are presented in Table 3.
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Table 2. Results of ablation experiments on DOTA dataset.

MRFPN SFEM mAP50 BR GTF SV LV SH BC ST SBF HA SP HC

baseline – – 63.4 41.3 60.3 65.6 69.8 78.1 55.2 59.7 50.5 58.8 52.9 40.3

Ours
✓ 68.1 43.7 66.7 67.5 75.6 85.8 66.1 66.0 48.1 67.6 58.0 55.8

✓ 68.8 47.5 68.7 68.4 77.5 86.2 60.4 64.4 57.9 62.6 59.3 57.1
✓ ✓ 69.7 47.8 70.2 68.6 78.1 86.6 65.7 65.8 58.1 67.2 58.9 57.4

Table 3. Error type metrics of ablation experiments on DOTA dataset.

MRFPN SFEM Ecls ↓ Eloc ↓ Ecls&loc ↓ Ebkg ↓ Emiss ↓

baseline – – 2.27 8.87 0.10 6.14 7.52

Ours
✓ 1.72 7.59 0.11 5.84 6.76

✓ 1.81 7.33 0.08 5.56 7.13
✓ ✓ 1.75 7.43 0.09 5.51 6.77

Firstly, to ascertain the effectiveness of the MRFPN and SFEM modules individually,
model variants that solely incorporated each module were developed on the basis of
the baseline. The integration of the MRFPN module led to a 4.7 increase in detection
performance, particularly for objects such as basketball courts, storage tanks, and harbors.
This improvement suggests that the multiscale rotation-invariant features extracted by the
module facilitate the network’s effective detection of objects varying in scale and orientation.
Incorporation of the SFEM module resulted in a 5.4 improvement in detection capabilities
for objects like large vehicles, swimming pools, helicopters, and ships, indicating that the
SFEM module effectively intensifies object features and mitigates feature overlap among
closely spaced objects. Finally, the combined application of both modules yielded an overall
improvement of 6.3, demonstrating that the two feature enhancement components produce
a synergistic effect. The multiscale rotation-invariant features extracted by MRFPN benefit
the semantic segmentation tasks within the SFEM module, whereas the SFEM module can
suppress noise in the features extracted by MRFPN.

We compared the responses of different types of errors to various improvement strate-
gies, as seen in Table 3. In general, all improvement strategies were observed to contribute
to a decrease in classification errors, regression errors, false positives in background de-
tection, and missed objects detections, thus validating the effectiveness of our proposed
modules. When only MRFPN was introduced, Ebkg was 5.84 and Emiss was 6.76. Similarly,
with the introduction of SFEM alone, Ebkg was 5.56 and Emiss was 7.13. The comparison
reveals that MRFPN can provide richer features (most notably by reducing classification
errors) and reduce missed detections, but it may misidentify some backgrounds as objects.
On the other hand, SFEM can suppress background noise and enhance object features (most
notably reducing regression errors), but this approach can lead to increased missed objects.
However, when both modules are applied together, they simultaneously reduce false pos-
itives from the background and missed detections, suggesting that the two components
work together synergistically.

4.3.3. Detailed Evaluation and Performance Testing of Components

In this section, we mainly explore the impact of different styles of semantic labels
(SemSty) and feature enhancement methods(Enh-Mtds) on network performance. Expl and
Impl represent the explicit and implicit enhancement methods mentioned in Methods 3.2 of
this article, respectively. Mask refers to the semantic mask obtained from object bounding
boxes, and Seg indicates semantic segmentation information. Based on the experimental
results in Table 4, we observe that under the same semantic annotation of Mask, the implicit
method outperforms the explicit method by 1.5. Similarly, under the semantic annotation
of Seg, the implicit method surpasses the explicit method by 1.4. Thus, when choosing the
same type of semantic label, the implicit enhancement method is superior to the explicit
enhancement method. This advantage primarily stems from the implicit method’s ability
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to decouple features of different objects into separate channels, facilitating the classification
and regression of various categories of objects. In contrast, the explicit enhancement method
is highly dependent on the accuracy of semantic segmentation, where any misclassification
or omission in segmentation directly impacts network performance.

Table 4. Results of Semantic Supervision with Different Strategies.

Enh-Mtds SemSty

Expl Impl Mask Seg mAP50 PL BD GTF BC SBF RA HA SP HC

baseline – – – – 63.4 88.5 74.9 60.3 55.2 50.5 63.9 58.8 52.9 40.3

Ours

✓ ✓ 66.5 88.7 77.1 62.9 58.6 54.2 61.0 60.9 57.2 52.2
✓ ✓ 67.4 88.9 76.8 63.2 60.8 53.6 63.9 61.3 57.6 54.5

✓ ✓ 68.0 88.8 77.1 70.0 62.1 53.3 61.5 62.3 58.7 56.1
✓ ✓ 68.8 89.2 77.4 68.7 60.4 57.9 64.1 62.6 59.3 57.1

Furthermore, we also observe that under the explicit enhancement approach, Seg
annotation improves performance by 0.9 compared to Mask annotation, and under the
implicit enhancement method, Seg annotation leads to a 0.8 improvement over Mask
annotation. Therefore, using Seg for supervision is superior to Mask under the same
feature enhancement method, mainly due to the precise semantic information reducing
background contamination and inter-class feature overlap. Specifically, using Seg anno-
tation significantly outperforms mask annotation for objects like roundabouts. This is
primarily because in the original DOTA dataset annotations the labeling for RA is not
uniform, including objects like small or large vehicles, leading to inter-class feature overlap
when using the Mask directly as semantic supervision. The mask may include part of the
background information for objects with irregular shapes, such as swimming pools and
helicopters, affecting the network’s regression performance.

We compared the responses of different feature enhancement strategies to various
types of errors, as seen in Table 5, all improvement strategies led to reductions in classifica-
tion errors, regression errors, false positives from the background, and missed detections
of objects, which demonstrates the effectiveness and versatility of the methods. Notably,
using Masks as supervisory information with explicit feature enhancement best improved
the issue of missed detections. However, among the four strategies, this approach showed
the least improvement in false positives from the background, primarily because using
Mask as semantic supervisory information reduces the difficulty of semantic segmentation
but also increases the risk of incorrect segmentation.

Table 5. Error type metrics of Semantic Supervision with Different Strategies.

Enh-Mtds SemSty

Expl Impl Mask Seg Ecls ↓ Eloc ↓ Ecls&loc ↓ Ebkg ↓ Emiss ↓

baseline – – – – 2.27 8.87 0.10 6.14 7.52

Ours

✓ ✓ 1.74 7.76 0.06 6.51 6.91
✓ ✓ 1.75 7.73 0.07 5.70 7.25

✓ ✓ 1.76 7.64 0.07 6.05 7.15
✓ ✓ 1.81 7.33 0.08 5.56 7.13

Regarding false positives from the background, under the same style of semantic
annotation, models using implicit enhancement methods outperform those with explicit
frameworks. This advantage is mainly because semantic segmentation information does
not directly affect network features. Instead, it indirectly generates weights for spatial
feature enhancement and decoupling between different types of features, mitigating the
direct impact of semantic segmentation errors. Concerning regression errors, using the
same feature enhancement method is superior to using a Mask. The main reason is that
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using Seg for semantic supervisory information can provide more accurate enhancement
areas, which aids the network’s regression tasks.

We provide a detailed visualization of different strategies for feature enhancement,
as seen in Figure 7. From the visualization results of object boxes, it is evident that when
using Masks as semantic guidance, false detections occur (as indicated by the red circles
in the figure). Additionally, for some object detection cases, the results are suboptimal,
failing to completely enclose the objects (as indicated by the green circles in the figure).
This is primarily attributed to the utilization of Mask as a semantic guide, which introduces
erroneous semantic information. In (e), for example, areas of the sea without ships are
segmented as harbors, directly impacting the generation of feature weights and resulting
in poor detection outcomes.

Retinanet(Baseline) Retinanet+Impl+Mask Retinanet+Impl+Seg
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Figure 7. Visualization of Different Strategies. (a–l) The first row (a–c) and second rows (d–f) present
the visualization results of detecting object boxes and outputting semantic maps. The last two rows
(g–l) indicate the visualization results of different channel feature maps. The first column represents
the experimental results of the baseline, while the second and third columns illustrate the results
obtained by employing Mask and Segmentation as semantic guidance information for implicit feature
map enhancement, respectively.
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Regarding the feature maps, employing implicit enhancement effectively decouples
features of different categories into different channels, as demonstrated by (h) and (k) as
well as (i) and (l). It is apparent that (h) and (i) enhance features belonging to the category of
ships, while (k) and (l) enhance features characteristic of harbors. Furthermore, a compari-
son of feature maps reveals that for images containing dense objects, using Segmentation as
semantic supervision is more effective, yielding clearer and more responsive feature maps.

In the MRFPN, we tested different numbers of feature layers and compared the use of
standard convolutions with deformable convolutions, as seen in Table 6. The experiments
revealed that when using standard convolutions, there was no significant difference in
performance between using four and five feature layers. However, after employing DCN
for feature extraction, additional feature layers improved the network’s performance. This
improvement is primarily attributed to the DCN’s enhanced capability to extract features
from irregular targets.

Table 6. Ablative study of MRFPN with different strategies.

MRFPN Layers Use DCN mAP50

{p3, p4, p5} – 67.98
{p3, p4, p5, p6} – 68.08
{p3, p4, p5, p6} ✓ 68.09

{p3, p4, p5, p6, p7} – 68.08
{p3, p4, p5, p6, p7} ✓ 68.11

In our experimental analysis of different strategies within the SFEM module, as seen
in Table 7. When an equal number of dilated convolutions are stacked at each layer of
the feature map, enhancing features across all feature maps yields better outcomes than
enhancing only a subset of feature maps. When enhancing the same set of feature maps,
appropriately stacking a certain number of dilated convolutions can enhance the model’s
detection performance. The primary reason is that multiple layers of dilated convolutions
introduce a larger receptive field to the SFEM module, enabling the acquisition of more
comprehensive contextual information.

Table 7. Ablative study of SFEM with different strategies.

Enhanced Layers Stacked Dilated Convolution mAP50

{p3, p4, p5} {1, 1, 1} 68.1
{p3, p4, p5} {4, 3, 2} 68.5

{p3, p4, p5, p6, p7} {1, 1, 1, 1, 1} 68.3
{p3, p4, p5, p6, p7} {4, 4, 3, 2, 2} 68.8

We proposed a method for implicitly generating weights using semantic segmentation
information to enhance feature maps. Therefore, the accuracy of semantic segmentation
directly affects the network’s performance. In the SFEM module, we tested three different
losses, as seen in Table 8. By comparison, it can be seen that without adjusting the loss
weights, focal loss performs best on the DOTA dataset for the class imbalance in remote
sensing images. However, considering that Dice loss has a stronger ability to distinguish
target regions, and based on our statistics, background pixels account for 96.95% of the
dataset. We introduced weights to Dice loss by setting the classification weight of back-
ground pixels to 1 and foreground pixels to 20. The experimental results showed that this
approach achieved the best performance.
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Table 8. Ablation study of the SFEM with different loss functions. BG represents the background
class weight and FG represents the foreground class weight.

Loss Weights mAP50 mAP

Focal loss [46] – 68.80 50.11
CE loss [60] BG{1},FG{1} 67.89 49.87

Dice loss [47] BG{1},FG{1} 67.99 50.07
Dice loss [47] BG{1},FG{20} 68.83 50.28

We conducted comparative experiments to test the SFEM module with different base
models, including the two-stage detection algorithm Faster R-CNN and the single-stage
object detection model YOLOv8, as seen in Table 9.

Table 9. Performance of SFEM with Various Base Models.

Base Model Backbone with SFEM mAP50 mAP

Faster R-CNN [48] ResNet101 – 70.24 53.12
Faster R-CNN [48] ResNet101 ✓ 71.12 53.28

yolov8-m [25] CSPDarknet – 74.75 57.32
yolov8-m [25] CSPDarknet ✓ 75.36 58.06
yolov8-l [25] CSPDarknet – 75.08 57.81
yolov8-l [25] CSPDarknet ✓ 75.84 58.47

All models were trained on the training set and tested on the validation set. Our
module achieved an improvement of 0.88 on mAP50 over Faster R-CNN, which is less
pronounced compared to the single-stage detector. The main reason is that the RPN
operation in the two-stage algorithm helps the network focus on the key feature regions
of the target, rather than detecting over the entire feature map. Our module achieved
improvements of 0.61 and 0.76 on mAP50 over YOLOv8-m and YOLOv8-l, respectively. It is
worth noting that, for a fair comparison, no pre-trained models were used during training,
and the default data augmentation method of YOLOv8 was applied.

4.3.4. Results on HRSC2016

The experimental results of HRSC2016 are presented in Table 10 as follows.

Table 10. Comparison with state-of-the-art methods on the HRSC2016 dataset.

Methods Backbone Size mAP50

R2CNN [61] ResNet101 800 × 800 73.1
R2PN [50] VGG16 / 79.6
OLPD [62] ResNet101 800 × 800 88.4

RoI-Trans [63] ResNet101 512 × 800 86.2
R3Det [24] ResNet101 800 × 800 89.3

RetinaNet(baseline) [46] ResNet101 800 × 800 84.6
RRD [64] VGG16 384 × 384 84.3

BBAVectors [54] ResNet101 800 × 800 89.7
SDet [65] ResNet101 800 × 800 89.2

SREDet (ours) ResNet101 800 × 800 89.8

With the modules proposed, our SERDet achieved an exemplary performance of
89.9%. Compared to specific ship detectors, SERDet shows an improvement of 5.2 over the
baseline model. Simultaneously, we present the visualization results of ship detection, as
seen in Figure 8, wherein it is evident that our proposed network is proficient in effectively
detecting ships. SREDet exceeds the performance of other leading two-stage and single-
stage detectors in the comparison.
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Figure 8. Visualization of Detection Results. Visualization of predictions on the HRSC2016 dataset
using our SREDet method.

5. Conclusions

This study proposes a semantic-enhanced rotation object detection network, SREDet,
targeting remote sensing image data. On the DOTA and HRSC2016 datasets, our network
achieved mAP50 scores of 79.32% and 89.84%, respectively, surpassing other advanced
methods compared in this study. First, the MRFPN module is designed to extract rotation-
invariant features by fusing multi-angle feature maps. Second, the SFEM module, which
utilizes semantic segmentation information for feature enhancement, is introduced. This
module decouples the features of different object categories into separate channels. We
compared our approach on several baselines, including Faster R-CNN and YOLOv8, and
SFEM consistently improved detection accuracy, demonstrating the effectiveness of our
proposed method. Finally, we introduced error-type analysis methods from general object
detection, providing more refined evaluation metrics for rotated object detection. These
metrics can demonstrate the network’s ability to handle different types of errors, guiding
further network improvements. However, the application of semantic segmentation in-
formation in this study is not comprehensive, as it does not consider the dependencies
between different semantics. These relationships could further optimize the object repre-
sentation in the network. In the future, we will investigate ways to integrate information
from both semantic segmentation and object detection streams, designing better network
structures to enhance rotation object detection capabilities. Furthermore, we will refine the
proposed error-type evaluation metrics, focusing on angle error analysis, to provide a more
comprehensive evaluation system.
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