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Abstract. Recent advancements in neural implicit 3D representations
have enabled simultaneous surface reconstruction and novel view synthe-
sis using only 2D RGB images. However, these methods often struggle
with textureless and minimally visible areas. In this study, we introduce
a simple yet effective encoder-decoder framework that encodes positional
and viewpoint coordinates into a shared feature field (SFF). This feature
field is then decoded into an implicit signed distance field (SDF) and a
color field. By employing a weight-sharing encoder, we enhance the joint
optimization of the SDF and color field, enabling better utilization of
the limited information in the scene. Additionally, we incorporate a pe-
riodic sine function as an activation function, eliminating the need for
a positional encoding layer and significantly reducing rippling artifacts
on surfaces. Empirical results demonstrate that our method more effec-
tively reconstructs textureless and minimally visible surfaces, synthesizes
higher-quality novel views, and achieves superior multi-view reconstruc-
tion with fewer input images.

Keywords: 3D Multi-view Representation - Textureless - signed dis-
tance field.

1 Introduction

3D scene reconstruction from multiple 2D images is a fundamental challenge in

both computer graphics and computer vision . Recent advances
in neural implicit representations have demonstrated significant potential in re-

constructing appearance and geometry 7 as well as in synthesizing

novel views [8[15[17,[37,[39]. By leveraging rendering methods, frameworks that
represent implicit surfaces through coordinate-based neural networks enable the
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Fig. 1: Qualitative results of typical examples. Using roughly half of the training
images in the DTU MVS dataset , our method outperforms Unisurf , VolSDF
163], and NeuS in learning more accurate and complete surfaces in textureless
regions with complex topology (e.g., scand0 and scan65). In scarcely visible regions,
such as the ears of the rabbit (scan55), our method generates a cleaner surface without
extraneous or missing parts.

conversion of 3D representations into 2D views. These frameworks are differen-
tiable and rely solely on 2D images for ground truth.

The effectiveness of reconstruction hinges on the choice of implicit repre-
sentations, rendering techniques, density modeling, and the co-optimization of
various fields. Recent studies have successfully combined signed distance fields
(SDF) or occupancy fields |44] with surface or volume
rendering techniques, resulting in notably improved performance.
These methods co-optimize different fields by either directly determining ra-
diance on surfaces or by transforming learned implicit fields into local
transparency functions for volume rendering , capturing both the ge-
ometry and appearance of solid and non-transparent 3D scenes with high fidelity.
Moreover, Gaussian-Splatting employs anisotropic 3D Gaussian primitives
to facilitate real-time reconstruction for a scene. Based on this, 2DGS adopts
anisotropic 2D Gaussian primitives to streamline the extraction of surface infor-
mation. However, challenges persist in accurately reconstructing textureless and
rarely visible surfaces. As illustrated in Fig. [T} in scenes with complex topology
or textureless regions that lack pixel-wise object masks for training supervision,
these methods struggle to fully recover the scene.

In this paper, we introduce SFF to address challenges associated with tex-
tureless and rarely visible regions. The core concept is that different neural fields
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share a common feature from an encoder, which reduces ambiguity during the
co-optimization of these fields by enriching each with supplementary informa-
tion from others. Specifically, for each spatial position (x,y,z), only a single
forward pass is needed. Unlike prior approaches that process the same spatial
positions through different fields and link these fields with intermediate features,
our method facilitates direct information sharing across fields. Each spatial po-
sition is encoded once and then decoded into the specific values of different fields
using shallow decoders, some with as few as one linear layer.

Additionally, we observe that optimizing surface reconstruction often results
in corrugated artifacts. Experiments indicate that these artifacts might be caused
by high-frequency components introduced by positional encoding, which are ill-
suited for this framework. To address this, we propose eliminating the positional
encoding layer and using a periodic sine function as the activation in the encoder.
This approach reduces corrugated artifacts and enhances surface smoothness.

In summary, our key contributions are:

— We present an end-to-end Encoder-Decoder framework that conducts a sin-
gle forward pass of spatial positions to encode diverse representations, which
are then decoded into various fields. This approach enhances surface recon-
struction and novel view synthesis for 3D scenes with complex topology,
particularly in textureless and rarely visible regions.

— We introduce a hybrid Sinus-ReLLU activation function that supersedes the
positional encoding layer, effectively diminishing mesh artifacts while pre-
serving the quality of novel view synthesis.

— Experimental results demonstrate that the proposed method more effectively
utilizes the limited information available in a scene, achieving high-quality
surface and appearance reconstruction.

2 Related Works

Multi-view 3D reconstruction methodologies have undergone substantial
evolution, shifting from traditional techniques to sophisticated, learning-based
approaches. Classical methods primarily focus on extracting and reconstructing
information from feature points [5,/7,|18}[19}/34,/51,/54] or voxel grids [1}|6}[12]
29,[311/52]. Feature-based techniques involve matching features across adjacent
views to generate depth maps for each pixel, subsequently requiring extensive
post-processing to achieve watertight surfaces. This includes depth information
fusion |11}/34] and mesh reconstruction processes, such as Poisson Surface Re-
construction [27]. However, this pipeline is complex and prone to accumulating
errors, particularly in scenarios with non-Lambertian or textureless surfaces,
which can degrade reconstruction quality. Conversely, voxel-based methods di-
rectly render complete surfaces from a 3D voxel grid but are constrained by
low resolutions due to high memory demands. With advancements in neural
networks, learning-based methods have been introduced to optimize the inter-
mediate stages of classical pipelines [30}/46l/49], such as improving feature match-
ing 30|, and developing end-to-end trainable systems that derive surfaces from
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depth supervision [24,60,/61]. Recent innovations leverage implicit representa-
tions and rendering techniques, enabling these methods to reconstruct water-
tight surfaces and synthesize novel views based solely on 2D image supervision,
with [42,/64] or without [44L561/63] the need for pixel-wise object masks.

3D Implicit Representation and Differentiable Rendering. Implicit 3D
representations emerge as a promising alternative due to their inherently contin-
uous nature, enabling the representation of 3D scenes without the need for dis-
cretization [335,[36}/41}1431/45/47]. These representations also offer the advantage
of a smaller memory footprint compared to the substantial memory requirements
of voxel-based methods. Implicit representations may take the form of signed dis-
tance fields [45], occupancy fields [10L35], or other signed fields [4]. When com-
bined with differentiable rendering, these representations can encode both the
3D appearance and geometry into 2D images, allowing for surface reconstruction
under solely 2D supervision. Differentiable rendering techniques can generally be
classified into two categories based on the radiance calculation method: surface
rendering and volume rendering. Surface rendering techniques [42}/64] apply ren-
dering functions directly to object surfaces to compute radiance but typically
require pixel-wise masks for learning precise implicit representations. Conversely,
volume rendering, as exemplified by NeRF [37], employs a radiance field’s alpha
composition along a ray to synthesize photo-realistic images. Recent multi-view
3D reconstruction methods [44,/56,/63] adopt this volume rendering approach,
innovatively transforming the implicit field to model point density along a ray,
thus achieving high-fidelity reconstruction of appearance and geometry with-
out the need for mask supervision. Despite these advancements, these methods
still face challenges in textureless or infrequently visible regions due to inherent
ambiguities. Unlike these approaches, our method, SFF, successfully reproduces
high-quality surfaces and novel views in such challenging conditions. We demon-
strate that using a weight-shared encoder-decoder framework combined with
a mixed Sinus-ReLU activation function effectively reduces ambiguities in tex-
tureless areas while preserving the integrity of the implicit field even in rarely
observed regions.

Point-based Rendering. Recent advancements in point-based 3D rendering
19,122 23,/28}/33,/58,,|59] demonstrate significant improvements in rendering effi-
ciency. Notably, NPBG |2] leverages a convolutional neural network to generate
RGB images from rasterized images. In contrast, 3DGS [28] employs anisotropic
3D Gaussian primitives to facilitate real-time reconstruction. Building on these
methods, Relightable3DGS [20] introduces physically-based differentiable ren-
dering to each 3D Gaussian point, incorporating lighting information to en-
able scene relighting. GaussianShader [26] simplifies the shading function to im-
prove the performance of 3DGS on reflective surfaces. For surface reconstruction,
NeuSG [9] utilizes an implicit SDF network to delineate surfaces from 3DGS.
SuGaR |22] incorporates a custom regularization term to better align Gaussian
primitives with the scene’s surface. Additionally, 2DGS [23]| adopts anisotropic
2D Gaussian primitives to streamline the extraction of surface information from
3DGS. Although point-based rendering methods are efficient in creating realistic
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scenes, their high demand for RGB images is notable. In contrast, SFF achieves
comparable 3D scene generation with fewer RGB images.

3 Method

In this section, we initially discuss the background encompassing the implicit
field, volume rendering, and density modeling of the implicit field. Subsequently,
we offer a detailed description of SFF, including the Encoder-Decoder paradigm
and the mixed Sinus-ReLU activation function paradigm. An overview of our
approach is illustrated in Fig. 2}

3.1 Background

Our goal is to reconstruct the geometry G and the appearance A of 3D objects
from a set of 2D RGB images {I;} with accurate camera poses. We employ the
zero-level set of an implicit signed distance field (SDF), defined by 6 € R™, to
represent the geometry. The appearance is recovered through volume rendering,
utilizing density modeling of the SDF and a color field, defined by v € R™. In
this section, we present a brief background of the aforementioned ideas, for solid
and non-transparent objects.

Signed Distance Field and Color Field. Each spatial position € R? at
a viewing direction v € R? is mapped to its signed distance to the object by
f(x;0) — R, and to its color by f(x,v;v) — R3. These mappings are facili-
tated by a neural Multi-Layer Perceptron (MLP). The geometry of the object is
therefore represented by the zero-level set of the SDF, which can be given by:

G ={zeR’| f(x;0) = 0}, (1)
and the color of each position is given by:

C(ZB/U) = f(SC, ’U;’Y). (2>

Volume Rendering and Density Modeling. Following NeRF [37], along a
ray r(t) = {o+tv | t > 0} through a pixel in a 2D image, where o is the center
of the camera and v is the viewing direction, the color of this pixel C(r) can be
accumulated by:

+o0
C(r) = /0 T(t)o(r(t))c(r(t),v)dt, (3)

where T'(t) = exp(— fot o(r(s))ds denotes the accumulated transmittance along
the ray and ¢ is the volume density. The solution to our goal has now become
finding a proper method to model the volume density based on the SDF. In this
paper, we adopt the method used in NeuS [56], where an opaque density function
p is proposed as the counterpart of the volume rendering, given by:

— G (f(r(1)
O (f(r()

0), (4)

p(t) = max(
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where f is the SDF function, @,(z) = (1+e~%) ! is the Sigmoid function whose
derivative ¢4(x) has a standard deviation of 1/s. In NeuS, s is a trainable pa-
rameter, and 1/s approaches zero as the MLP converges during training. Finally,
the color of a pixel in Eq. can be rewritten using numerical quadrature based

on Eq. as:
C(r) = ZTiaici, (5)
i=1

where T; = H;;ll(l — «;) is the discrete accumulated transmittance, and «; is

discrete opacity density, given by:

Qs(f(r(ti))) — Ps(f(r(tiv1)))
s (f(r(t:)))

we refer readers to [56] for more details. Under this setting, we are able to co-
optimize the SDF and color field by defining loss functions between the rendered
images and the ground truth, which will be described in the next section.

Recent volume rendering-based works [44,/56,63| pay lots of attention to the
selection of implicit field and the density modeling, while they share a similar
networks paradigm, where different MLPs are designed for different fields, and
therefore each spatial position requires several forward passes. Besides, features
extracted from one MLP will be fed to another, which may introduce ambiguity
among different MLPs. For example, in |44,56,63|, 2 MLPs, MLP; with param-
eters §; and MLP, with parameters 6. represent the implicit SDF field and the
color field respectively. Besides the implicit function value O;, the features F
and gradients V output from one forward pass of the spatial positions « in the
implicit field MLP are concatenated with the spatial positions again and the
view direction v, and then fed to the color field MLP for another forward pass
to output the color ¢ of each position. This paradigm, as given in Eq. and
Eq. , lacks regularization among different MLPs, and intuitively, it needs to
match the input positions of one MLP to the features resulting from another
forward pass of the same positions in another MLP.

a; = max(

,0), (6)

¢= MLP (x,v,V,0;, F;0,.). (8)

3.2 SFF

In this section, we present SFF for multi-view reconstruction. We unite the
multiple MLPs paradigm into an Encoder-Decoder paradigm, accompanied by
a mixed Sinus-ReLU activation function paradigm.

Encoder-Decoder paradigm. Our motivation arises from observing that each
MLP in the common paradigm serves both as an encoder and a decoder. In this
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Fig. 2: Illustration of SFF. The proposed Encoder-Decoder paradigm encodes the
spatial positions as a general feature in only one forward pass and decodes it into
different fields.

setup, both the SDF and the radiance field employ separate MLPs with posi-
tional encoding, leading to ambiguity in matching features to positions. While
such models fit the training views well, they often struggle to accurately rep-
resent the underlying geometric structure. To address this issue, we propose a
new paradigm: a weight-shared encoder-decoder model. This model uses a single
forward pass with spatial positions to obtain a general feature, which is then
shared across multiple decoders. This approach provides greater regularization
and reduces ambiguity in matching spatial positions to features across different
forward passes.

To be specific, for a given position & € R3, an encoder E first encodes it
into a general feature F'. The feature is then fed into 2 decoders, Dy and D,
which represent the SDF and the color field, respectively. A forward pass in this
encoder-decoder pipeline is given by:

sdf (x) = Dy(F;0p,) (10)
c(x) = D(f(F),v,Vgsdf;0p,), (11)

where 0, 0p,,0p, represent the learnable parameters of the encoder F, decoder
D, and D, respectively. sdf (x) is the SDF value, and ¢() is the RGB color value
of point . f in Eq. is a linear layer for the transformation of semantics. v
is the viewing direction and V,sdf represents the normal vector of SDF.

Compared to the paradigm introduced in Sec. 3.1} where the color field is
conditioned on [x,v, Vgsdf, Fsq, we allow the SDF and color field to share the
same feature F' from the encoder and save the spatial position from another
forward pass.

Mixed Sinus-ReLU Activation Function Paradigm. Following NeRF |37],
a positional encoding layer for capturing high-frequency geometry and texture is
applied to the spatial positions and the viewing direction before they are fed into
the encoder and the decoder. However, we empirically find that high-frequency
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positional encoding of the spatial position brings corrugated artifacts on the
mesh, while low-frequency positional encoding results in relatively low-quality
novel views.

To mitigate the corrugated artifacts and synthesize high-quality novel views,
we remove the positional encoding layer and introduce a mixed Sinus-ReLU ac-
tivation function paradigm for the encoder and decoders in our pipeline. Specif-
ically, we use the sinus function as the activation function for the encoder, and
ReLU [40] for the decoders. We follow SIREN [53] to set the sinus function as:

Act(x) = sin(wg - x), (12)

where wy is a trainable parameter, initially set to 3. Network weights are initial-
ized using a uniform distribution W ~ U(—+/6/ic/wq, \/6/ic/wp), except for the
first layer, which is initialized as W ~ U(—+/1/ic, v/1/ic), where ic represents
the number of input channels for each layer.

Experimental evidence indicates that position-dependent functions of densely
sampled spatial points need higher-frequency variations. Sparse views, however,
lack adequate supervision to model these functions, causing frequency-related
artifacts. Our mixed Sinus-ReLU activation function paradigm allows the net-
work to capture frequency information effectively, producing smooth meshes and
high-quality novel views through the decoders.

3.3 Training

Loss Function. Given a set of 2D images with accurate camera poses as ground
truth, we optimize the following loss function during training:

L= £ren + )\ﬁreg> (13>

Lrern is the L1 loss between the rendering color C', of the pixels in a ray batch
of size B and the corresponding ground truth Cg, given by:

1
Eren - E ; Ll(Crena C’gt)~ (14)

Following [21]|, an Eikonal term L., is adopted to regularize the SDF value of
each sampled point on the ray batch. Assuming N points are sampled along a
ray, the L4 is given by:

1
Loy = 55 DV sl (23) | — 1), (15)

(2]

where x; ; is the j*® sampled point on the i‘! ray.

Sampling. In our approach, we adopt the hierarchical sampling strategy from
NeusS [56], which involves an initial coarse sampling followed by a finer one, both
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conducted within a single network. This differs from the hierarchical sampling
methodology used in NeRF [37], where separate stages are typically employed.
During the coarse sampling phase, the network remains untrained, and the stan-
dard deviation of the derivative of the Sigmoid function in Eq. , denoted as
1/s, is set to a high, fixed value. Using this setting, we run the network to gener-
ate a probability distribution from samples obtained with 1/s. This probability
distribution is then used for the fine sampling stage, and then the network and
the standard deviation are switched to be learnable for the training stage.

4 Experiments

In this section, we evaluate our method on the 15 common scenes from the DTU
MVS dataset [25] and compare the quantitative results, including the Chamfer
Distance [35] for meshes and the PSNR for novel views, with related baselines.
We show that our method is better at dealing with objects with complicated
topology in textureless and rarely visible regions with sparse training images.

4.1 Datasets

DTU MVS. The DTU MVS dataset [25] features various scenes of small models
captured by an industrial robot arm in a dedicated studio, presenting challenges
due to non-Lambertian surfaces and complex geometries. Each scene comprises
either 49 or 64 images at a resolution of 1200 x 1600, accompanied by precise
camera poses. We focus on 15 commonly analyzed scenes used in [42,/44L|56}63]
64] from the DTU dataset. To demonstrate our method’s efficacy with limited
visibility, we only randomly select 20/30 images from each scene for training.
Blended MVS. The Blended MVS dataset [62] is an extensive MVS dataset.
Unlike the DTU MVS dataset, it includes ambient lighting data, posing addi-
tional challenges for reconstructing dimly lit areas. As demonstrated in [38,|44]
55156,(63|, each scene in the dataset contains 31 to 143 images and corresponding
masks, all downscaled to a relatively low resolution of 768 x 576.

4.2 Baselines

For comparisons, we use the source code released by the following baselines to
conduct experiments on the same dataset as our method, which means that
we also decrease the number of training images from 49/64 to 20/30 for these
methods. Except for the number of training images, we follow their settings to
train on each scene and report the Chamfer Distance and PSNR.

— COLMAP |51] is a general-purpose Structure-from-Motion (SfM) and Multi-
View Stereo (MVS) pipeline with a graphical and command-line interface.
COLMAP estimates the depth of the scene according to the given image to
obtain a dense point cloud for the scene. With the help of Poisson Surface
Reconstruction [27], a mesh of the scene can be generated.
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— NeRF |[37] also provides an ability to extract mesh since the density is
related to the transparency of a point in space. We define a density threshold
of 30 to generate the mesh and use NeRF to synthesize novel views as well.

— Unisurf [44] models the 3D scenes with an implicit occupancy field and
gradually learns to sample points near the surface. It co-optimizes the occu-
pancy field and the color field to synthesize novel views.

— VoISDF |[63] models the density from the SDF based on the cumulative
distribution function of the Laplace distribution, with a zero mean and a
learnable scale. It uses an adaptive sampling method to sample spatial points.

— NeuS [56] models the density from the SDF with a derivative of the Sig-
moid function and adopts a hierarchical sampling method but with only one
network. Unisurf, VolSDF, and NeuS use a similar network paradigm, as
mentioned in Sec. 3.1l

— 2DGS |23] is an explicit point-based rendering method based on the princi-
ples of 3DGS. It leverages ray-splat intersection and rasterization, utilizing
2D Gaussian primitives for enhanced surface approximation.

— SuGaR |22]| employs a two-stage method leveraging 3D Gaussian primitives
for mesh rendering. Initially, it utilizes 3DGS for a preliminary reconstruc-
tion. Subsequently, SuGaR incorporates a tailored regularization term that
promotes alignment of the Gaussian primitives with the scene’s surface, fa-
cilitating concurrent training of both the primitives and the mesh.

4.3 Implementation Details

As shown in Fig. [2| the encoder is modeled by an 8-layer MLP with a hidden
size of 256, whose activation function is the sinus function. The decoder for the
SDF is a one-layer MLP, which directly outputs the SDF value, and the decoder
for the color field is a 2-layer MLP with a hidden size of 128 whose output is
the RGB color. The activation function of the first layer of the color decoder is
ReLU [40]. We assume that the foreground of the scenes is in a unit sphere and
we sample 64 points for both the coarse and fine sampling procedures. For the
background outside the sphere we use NeRF++ [65] as the rendering method
and sample 32 points along each ray. The initialization method is described in
Sec. Each scene is trained on an NVIDIA A100 GPU for 1000k iterations.

4.4 Comparisons

Quantitative Comparison. Similar to [441|56}/63}/64], we report the Chamfer
Distance [35] between the reconstructed surfaces and the ground truths provided
by the DTU MVS dataset to evaluate the reconstruction quality. We also report
the PSNR on the testing set to evaluate the quality of the novel views. As shown
in Tab. [T our method outperforms the compared methods in mean Chamfer
Distance and mean PSNR. Although in terms of the mean Chamfer Distance,
our method is better than NeuS, we verify in the following part that in scenes that
we focus on in this paper, those with complicated topology as well as textureless
and rarely visible regions, our method performs much better.
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Table 1: Quantitative results on the DTU dataset. The proposed method
achieves better performance on the PSNR and Chamfer Distance (CD) metrics.

ScanID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 mean

colmap 1.14 221 1.03 1.37 189 178 1.08 3.15 146 231 133 180 046 0.73 1.21 1.53
NeRF 1.73 187 141 092 140 097 1.14 145 1.66 1.02 0.72 189 042 0.71 0.60 1.19
A VoISDF 1.72 1.94 0.94 0.60 125 081 1.02 145 1.36 092 0.76 2.06 0.46 0.76 0.68 1.12
© UniSurf 1.71 1.89 248 1.09 140 094 0.88 1.42 135 095 0.69 1.90 0.55 0.74 0.64 1.24
NeuS 141 1.24 140 045 1.17 084 0.67 148 1.15 0.82 0.59 1.32 0.38 0.51 0.55 0.932

Ours 1.23 136 1.13 0.44 122 0.71 0.72 1.41 1.29 092 0.53 1.56 0.36 0.50 0.56 0.929

NeRF 22.06 20.59 21.61 24.65 24.53 24.84 25.10 27.06 21.46 24.90 29.98 28.86 27.72 32.21 31.96 25.84
VoISDF 21.12 20.10 21.25 23.32 23.92 25.84 25.87 27.18 23.63 26.27 29.46 29.37 27.82 31.94 30.88 25.87

UniSurf 22.45 20.72 19.82 24.35 21.69 26.38 26.00 26.92 24.80 25.23 31.09 30.38 28.30 32.98 32.49 26.24

PSNR

NeuS 23.37 23.71 24.97 30.09 29.77 31.54 31.47 31.35 29.66 30.76 36.80 35.40 33.94 38.75 37.73 31.29

Ours 26.7425.83 26.99 30.13 30.40 31.26 29.86 32.16 29.89 30.94 36.25 34.90 33.53 38.49 37.53 31.49

Qualitative Comparison. Under the setting of fewer training images, the re-
construction quality of Unisurf and VolSDF greatly degrades. COLMAP recovers
detailed but incomplete surfaces because of the trimming. Similarly, incomplete-
ness and lots of noise can be found in the reconstructed scene recovered by
NeRF. Besides, the reconstruction quality of NeRF depends on the choice of the
threshold of the density value. NeuS performs well in most of the scenes, while in
scan4( and scan65 where the foreground object is textureless and with compli-
cated topology, it is lost in ambiguous regions and misses some important details.
On the contrary, our method succeeds in recovering the inner surface (scan40
in Fig. [1) and details like the windows on the building in scan24 (Fig. [3)), even
with less than half of the images in each scene for training. One more example
is that, as shown in Fig. [Iin scan65, where a textureless skull with complicated
topology and details on the surface is presented, our method accurately recon-
structs the cartilage in the nasal cavity, and two tiny holes below the eye socket
as well, while the other methods either fail to learn this structure (Unisurf and
VoISDF), or reconstruct it incompletely (NeuS).

We also evaluate it against the recent Gaussian-splatting-based (GS-based)
method, which shows great potential in surface reconstruction tasks. The results,
as shown in Fig. [4] indicate that the GS-based method frequently produces dis-
continuous surfaces, characterized by multiple holes. This is primarily due to
the explicit structure of the GS method, which struggles to optimize spatially
continuous representations under sparse viewpoints. In contrast, our approach
achieves superior surface reconstruction by jointly optimizing the SDF and ra-
diance field through feature sharing, thereby extracting more comprehensive
information from sparse scene views.
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Fig. 3: Qualitative results. All of the scenes are trained under the setting in Sec.
where half the images are randomly sampled from the original training dataset for each
scan. Compared to COLMAP [51], NeRF [37], Unisurf [44], VolSDF and NeuS [56],
our method learns more complete surfaces with more details.
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Reference

Fig. 4: Qualitative comparison with Gaussian-Splatting-based methods. Un-
like the SuGaR and 2DGS methods, our approach facilitates the creation of
more continuous surface representations, particularly for surfaces with sparse textures.

4.5 Ablation Studies

Shared Feature Fileds. This article emphasizes the benefits of information
sharing between the color field and the SDF field. To investigate this, we conduct
two experiments to isolate the information between them to varying degrees.
In the first experiment, we do not provide the SDF decoder’s output to the
color field decoder (denoted as w/o SDF share). In the second experiment, the
encoder’s output information is not shared (denoted as w/o feature fields share).
The results, as shown in Fig. [5] indicate that reducing the shared information
decreases the quality of the reconstruction. Therefore, the shared information
between different fields facilitates their joint optimization.
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w/o Feature

" .
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w/o SDF share

Fig.5: Ablation Studies. Each component designed is visually important for the
final reconstruction result.

The mixed Sinus-ReLU Activation Function. We show other ablation re-
sults in Fig. With the classic “Positional Encoding + ReLU” paradigm (denoted
as PE+ReLU), in which corrugate artifacts can be found on the reconstructed
surface. Then, we use only the sinus function as the activation function for all
of the encoders and decoders (denoted as Only Sinus). We find that the recon-
struction quality also degrades. Intuitively, we introduce the sinus function to
bring some of the frequency encoding ability, while ReLU seems more ideal to
represent SDF because its gradient is locally constant and its second derivative
is zero. Therefore, we only use the sinus function in the encoder and ReLU in
the decoders to compensate for the implicit fields’ limited representation ability.

4.6 Limitations

The limitation of our method lies in its inability to reconstruct non-transparent
or non-watertight surfaces, an important area for future research that could be
addressed by incorporating priors and using representations from multiple im-
plicit fields. Similar to most related methods , our approach requires
training separate networks for each scene, which is inefficient for practical ap-
plications. A potential improvement would be to learn a general implicit field
representation that can be fine-tuned for new scenes.

5 Conclusion

In this paper, we propose a new method for 3D multi-view reconstruction from
2D RGB images. Using an Encoder-Decoder paradigm, a shared feature is en-
coded for the SDF and color field, requiring only a single forward pass for spatial
positions, thereby reducing spatial ambiguity. Additionally, the introduction of a
mixed Sinus-ReLU activation function helps eliminate corrugated artifacts. Our
quantitative and qualitative results demonstrate that this method effectively re-
constructs objects with complex topology, especially in textureless and rarely
visible regions, while producing high-quality novel views.
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